

### Out of plane elastic compressive behavior of Metallic honeycomb structure









# INTRODUCTION



#### Sandwich Structures

#### Behavioral knowledge of parts

**Prediction of use limits** 

**Definition of Safety Coefficients** 

Engineering Composite 3D All rights reserved. Proprietary information.







# INTRODUCTION











### Determination of input data



## INTRODUCTION



| 3/8              | 1.0              | 55               | 25              | 60               | 35              | 15              | 35              | 55              | 45              | 15.0 | 35              | 25              | 6.8               |
|------------------|------------------|------------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|------|-----------------|-----------------|-------------------|
| <mark>3/8</mark> | <mark>1.6</mark> | <mark>100</mark> | <mark>75</mark> | <mark>110</mark> | <mark>80</mark> | <mark>30</mark> | <mark>50</mark> | <mark>90</mark> | <mark>78</mark> | 20.0 | <mark>60</mark> | <mark>38</mark> | <mark>10.5</mark> |
| 3/8              | 2.3              | 215              | 155             | 225              | 155             | 58              | 100             | 170             | 130             | 32.0 | 95              | 62              | 15.0              |
| 2/0              | 0.0              | 320              | 240             | 340              | 260             | 92              | 160             | 245             | 190             | 43.0 | 145             | 100             | 19.0              |

HexWeb® Honeycomb Attributes and Properties

Test data obtained at 0.625 inch thickness.

Unique and constant thickness

### Determination of input data

When defining the properties of honeycomb core the following points should be taken into consideration:-

$$E_{_X} \approx E_{_Y} \approx 0$$

A very small value may be necessary to avoid singularity.

$$\begin{split} \mu_{xy} &\approx \ \mu_{xz} \approx \ \mu_{yz} \approx \ 0 \\ G_{xy} &\approx 0 \\ G_{xz} &= \ G_L = \ \text{shear modulus in ribbon direction} \\ G_{yz} &= \ G_W = \ \text{shear modulus in transverse direction} \\ E_z &= \ E_c = \ \text{compressive modulus of core material} \end{split}$$

HexWeb<sub>TM</sub> HONEYCOMB SANDWICH DESIGN TECHNOLOGY





HexWeb\_HONEYCOMB SANDWICH DESIGN TECHNOLOGY

INTRODUCTION Out of plane properties of honeycomb (open source) E<sup>\*</sup><sub>3</sub> Gibson & Ashby: Cellular solids:  $\tau_{23}, \chi_{23}, G_{23}^*$   $X_2$ structure and properties. **Out-of-Plane Properties** τ<sub>23</sub>, γ<sub>23</sub>, G<sup>\*</sup><sub>23</sub>  $T_{13}, Y_{13}, G_{13}^{*}$ Lecture 5, 3.054 Honeycombs: Out of plane behavior Honeycombs used as cores in sandwich structures carry shear load in  $x_1 = x_3$  and  $x_2 = x_3$  planes  $E_3 = E_s(\rho / \rho_s) = E_s {t \choose \overline{l}} \frac{h/l + 2}{2(h/l + \sin \theta) \cos \theta}$ Honevcombs sometimes used to absorb energy from impact — loaded in  $x_3$  direction Require out-of-plane properties Cell walls extend or contract, rather than bend Notice:  $E_3 = \frac{t}{l}$  and  $E_1$ ,  $E_2 = \left(\frac{t}{l}\right)^3$  Large anisotropy Honeycomb much stiffer and stronger Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2 University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge Linear-elastic deformation Honeycomb has 9 independent elastic constants: 4 in-plane 5 out-of-plane Young's Modulus,  $E_3$ Cell walls contract or extend axially  $E_3$  scales as area fraction of solid in plane perpendicular to  $x_3$ 



### Out of plane properties of honeycomb

Gibson & Ashby: Cellular solids: structure and properties.

Young's Modulus,  $E_3$ 

$$E_3 = E_s(\rho / \rho_s) = E_s\left(\frac{t}{l}\right) \frac{h/l + 2}{2(h/l + \sin\theta)\cos\theta}$$

Cell walls contract or extend axially

 $E_3$  scales as area fraction of solid in plane perpendicular to  $x_3$ 

At fixed density:

- E<sub>c</sub> is a constant **independent** of cell configuration,
- E<sub>c</sub> is a constant independent of core thickness,
- E<sub>c</sub> is a constant **independent** of size of the part.

#### Out of plane compressive modulus of AA5052 Honeycomb

| Data                                             | ı (Hexcel)         |                            | Conver                        | ted Data                   | Theoretical<br>Value*      |         |
|--------------------------------------------------|--------------------|----------------------------|-------------------------------|----------------------------|----------------------------|---------|
| Denomination<br>Cell-size -Alloy - Foil<br>Gauge | Nominal<br>density | Compressive<br>Modulus ksi | Density<br>kg.m <sup>-3</sup> | Compressive<br>Modulus MPa | Compressive<br>Modulus ksi | Error % |
| 1/8 - 5052003                                    | 12,0               | 900                        | 192,0                         | 6207                       | 722                        | -19,8   |
| 1/8 - 50520025                                   | 10,0               | 500                        | 160,0                         | 3448                       | 601                        | +20,3   |
| 1/8 - 5052002                                    | 8,1                | 350                        | 129,6                         | 2414                       | 487                        | +39,2   |
| 1/8 - 50520015                                   | 6,1                | 240                        | 97,6                          | 1655                       | 367                        | +52,9   |
| 1/8 - 5052001                                    | 4,5                | 150                        | 72,0                          | 1034                       | 271                        | +80,4   |
| 1/8 - 50520007                                   | 3,1                | 75                         | 49,6                          | 517                        | 186                        | +148,6  |
| 3/8 - 50520015                                   | 2,3                | 45                         | 36,8                          | 310                        | 138                        | +207,4  |
| 3/8 - 5052001                                    | 1,6                | 20                         | 25,6                          | 138                        | 96                         | +381,2  |
| 3/8 - 50520007                                   | 1,0                | 10                         | 16,0                          | 69                         | 60                         | +501,5  |

\*  $\begin{array}{c}
 E_{3} = E_{s} (\rho / \rho_{s}) & E_{c} = E_{s} (\rho / \rho_{s}) \\
 E_{s} = 70000 \text{ MPa} & E_{s} = 10150 \text{ ksi} \\
 \rho_{s} = 2700 \text{ kg.m}^{-3} & \rho_{s} = 168,75 \text{ pcf}
\end{array}$ 



#### Out of plane compressive modulus of AA5052 Honeycomb



As the density decreases, the difference between the theoretical and the experimental compressive modulus increases.

> Engineering Composite 3D All rights reserved. Proprietary information.

### Out of plane compressive modulus of AA5052 Honeycomb

• Two major influence factors:



#### 2. Overestimated modulus of aluminum foil:





Properties of 5052 Aluminum for Use as Honeycomb Core in Manned Spaceflight

Bradley A. Lerch Glenn Research Center, Cleveland, Ohio



The modulus of thin gauge aluminum foil is lower than that of the corresponding solid



Implementation of the honeycomb homogenized model

Definition of elastic constants

Experimental data and/or literature

Linear invariant elastic behavior

Structural imperfections not taken into account





# PART I: Generality





#### Out of Plane Compressive Modulus

#### Standard ASTM C365 – MIL STD 401 B

#### **Quasi-static** Conditions



Designation: C365/C365M – 16

Standard Test Method for Flatwise Compressive Properties of Sandwich Cores





HexWeb® Honeycomb Attributes and Properties





#### Protocol (part II, III and IV)



Tom Bitzer Hexcel Corporation Dublin, CA USA "...To determine the compressive modulus, one method that works very well is to drill a small hole through the center of the sample. A rod attached to a **transducer** is then inserted through the hole.

It is *not good practice to use the test machine cross-head* travel to obtain the specimen's deformation.

The modulus values determined this way will normally be quite low, as little as one-third the actual value..."

Quasi static conditions: 0.02 in.min<sup>-1</sup>

Extensometer (LVDT)

One spherical seat (self-aligning) platen









On 0.8mm 0.03 in thick aluminum skins









4.8mm-5056-18µm-32kg.m<sup>-3</sup>

#### Manufacturer data

| al Aluminum Honeycomb | HexWeb <sup>®</sup> CR III 5056 |
|-----------------------|---------------------------------|
|-----------------------|---------------------------------|

Typical values (typ) are presented below, as well as minimum average (min) for a product type.

|           | Nominal<br>Density<br>pcf |                  | (                | Compre       | ssive |                             |                 | Plate Shear      |                  |                   |                 |                 |                   |  |
|-----------|---------------------------|------------------|------------------|--------------|-------|-----------------------------|-----------------|------------------|------------------|-------------------|-----------------|-----------------|-------------------|--|
| Cell Size |                           | Ba               | ire              | Stabilized   |       |                             | Crush           |                  | L Direc          | tion              | W Direction     |                 |                   |  |
|           |                           | Strength psi     |                  | Strength psi |       | Modulus Strength<br>ksi psi |                 | Strength psi     |                  | Modulus<br>ksi    | Strength psi    |                 | Modulus<br>ksi    |  |
|           |                           | typ              | min              | typ          | min   | typ                         |                 | typ              | min              | typ               | typ             | min             | typ               |  |
| 5/32      | 2.6                       | 250              | 180              | 265          | 185   | 70                          | 120             | 200              | 152              | 37.0              | 115             | 80              | 17.0              |  |
| 5/32      | 3.8                       | 450              | 360              | 500          | 375   | 140                         | 235             | 335              | 272              | 57.0              | 195             | 155             | 24.0              |  |
| 5/32      | 5.3                       | 820              | 615              | 865          | 650   | 240                         | 420             | 550              | 435              | 85.0              | 325             | 250             | 33.0              |  |
| 5/32      | 6.9                       | 1120             | 920              | 1340         | 1000  | 050                         | 650             | 760              | 610              | 118.0             | 430             | 360             | 43.0              |  |
| 3/16      | <mark>2.0</mark>          | <mark>190</mark> | <mark>110</mark> | 200          | 120   | 45                          | <mark>75</mark> | <mark>140</mark> | <mark>105</mark> | <mark>27.0</mark> | <mark>85</mark> | <mark>50</mark> | <mark>13.0</mark> |  |

HexWeb® Honeycomb Attributes and Properties

typ. Compressive modulus  $E_c 45ksi \approx 310MPa$ 

## **GEOMETRICAL INTERACTION**

# PART II: Geometrical Interaction

## **GEOMETRICAL INTERACTION**

#### Specimens



### Experimental results

Bare compression Thickness T:15,9mm (75x75mm<sup>2</sup>) L 2,95x W 2,95x T 0,625 in<sup>3</sup>



#### **GEOMETRICAL INTERACTION**







Bare compression FE / EXP comparison 15,9mm (75x75mm<sup>2</sup>) L 2,95 x W 2,95 x T 0,625 in<sup>3</sup>



### **GEOMETRICAL INTERACTION**



Bare compression FE / EXP comparison 15,9mm (75x75mm<sup>2</sup>) L 2,95 x W 2,95 x T 0,625 in<sup>3</sup>







Experimental tests are well correlated by numerical models

An 8% increase in weight leads to an almost +120% increase in compressive modulus



Both experiment and numerical tests indicate:

Cell configuration influences the compressive modulus of the structure

The compressive modulus measured differs from the theoretical one

 $\mathbf{E}_{c}$  is not invariant and constant

# PART III: Thickness Interaction

Bare compression

#### T=5,0 mm 0,197 in Average value <sup>5x75mm<sup>2</sup></sup> Average bare compression - 5,0mm heigh



### T=10,0 mm 0,394 in Average value



### T=15,9 mm 0,625 in Average value



### T=44,0 mm 1,732 in Average value



| Out of plane Compressive Modulus Evolution Hexcel 5056-3/16-0.0007-2.0 |                                                  |                                                        |                                  |  |  |  |  |  |
|------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|----------------------------------|--|--|--|--|--|
| Thickness                                                              | EC3D <sub>Experimental</sub><br>Bare Compression | EC3D <sub>Experimental</sub><br>Stabilized Compression | Hexcel<br>Stabilized Compression |  |  |  |  |  |
| 5,0 mm / 0,197 in                                                      | <b>97 MPa /</b> 14,1 ksi                         | <b>170 MPa /</b> 24,6 ksi                              | -                                |  |  |  |  |  |
| <b>10,0 mm /</b> 0,394 in                                              | <b>237 MPa /</b> 34,4 ksi                        | 248 MPa / 36,0 ksi                                     | -                                |  |  |  |  |  |
| <b>15,9 mm /</b> 0,625 in                                              | <b>321 MPa /</b> 46,5 ksi                        | <b>322 MPa /</b> 46,7 ksi                              | <b>310 MPa /</b> 45 ksi          |  |  |  |  |  |
| <b>44,0 mm /</b> 1,732 in                                              | <b>382 MPa /</b> 55,4 ksi                        | <b>382 MPa /</b> 55,4 ksi                              | -                                |  |  |  |  |  |









38

Plastic collapse occurs at a lower strain as core thickness increase This phenomena is measured on both bare and stabilized tests

Core thickness influence on out of plane compressive modulus is measured and the onset of micro-buckling is numerically correlated

Classical compressive normalized tests are carried out at constant thickness

The typical compressive modulus measured at T = 0,625 in is only valid for this thickness

5056 Out of plane Compressive Modulus (Bare condition)



Negligible core thickness influence on out of plane compressive strength Except for thin stabilized core , due to adhesive menisci reinforcement

### DMENSIONAL INTERACTION

# PART IV: Dimensional Interaction





#### Hexcel 5056-3/16-0.0007-2.0

Hexagonal Classical Configuration

Average Bare Compression Thickness 44,0mm (5625 mm<sup>2</sup> / 15625 mm<sup>2</sup> / 26841 mm<sup>2</sup>)





Compressive modulus is slightly influenced by The dimensions of the specimen

Test adapted to the dimensions of the final part Must be carried out





# CONCLUSION





At least for metallic honeycomb structures

Future works needs to be done...



## Thank you FOR YOUR ATTENTION

Engineering Composite 3D All rights reserved. Proprietary information.